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Abstract— The detection of surrounding vehicles is an es-
sential task in autonomous driving, which has been drawing
enormous attention recently. When using laser scanners, L-
Shape fitting is a key step for model-based vehicle detection and
tracking, which requires thorough investigation and compre-
hensive research. In this paper, we formulate the L-Shape fitting
as an optimization problem. An efficient search based method
is then proposed to find the optimal solution. Our method
does not rely on laser scan sequence information and therefore
supports convenient data fusion from multiple laser scanners;
it is efficient and involves very few parameters for tuning; the
approach is also flexible to suit various fitting demands with
different fitting criteria. On-road experiments with production-
grade laser scanners have demonstrated the effectiveness and
robustness of our approach.

I. INTRODUCTION

Autonomous driving has been studied widely in the lit-
erature [1]-[5]. The detection of surrounding objects is
an essential task in autonomous driving [6], [7], in which
sensing by Light Detection And Ranging (LIDAR) plays an
important role. The laser scanner has been widely adopted for
the perception of the surrounding environment because the
sensor has the capability to measure its distance to the surface
of the surrounding objects with high accuracy. A typical way
of processing range data is to segment the range data into
clusters of points, from which meaningful features such as
line segments, chunks, and rectangles are extracted [8]. These
features are meaningful because they correspond to objects
like walls, bicycles, woods, bushes, vehicles, and pedestrians
in the real world [9]. The features are then associated with
a static map or tracked targets and used to update the target
state through tracking methods such as Multiple Hypothesis
Tracking (MHT) [10], [11] or its advanced version which
integrates a Rao-Blackwellized Particle Filter (MHT-RBPF)
[12], [13].

Even though there is still work to be done before fully
autonomous driving arrives, semi-autonomy is already taking
place and will be widely introduced in the near future. For
example, Adaptive Cruise Control and Collision Warning
have already been introduced in high-end luxury vehicles. All
these semi-autonomy systems rely heavily on the detection
and tracking of moving vehicles, which plays an important
role and deserves further study and deeper exploration.
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Fig. 1: CMU autonomous vehicle research platform “SRX”

In this paper, we focus on L-Shape fitting using laser range
data for vehicle tracking. L-Shape fitting is very important,
as it provides feeds for vehicle detection and tracking, which
is a key component to enable autonomous driving. L-Shape
fitting needs to be robust and correct, otherwise it may
mislead the object tracking and even cause an accident.
L-Shape fitting also needs to be computationally efficient,
so that the many high-level estimation and decision tasks
depending on it can be completed in real time.

In this paper, we propose a search-based L-Shape fit-
ting approach for vehicle detection from laser data that is
computationally efficient. Through on-road experiments with
production-grade sensors, the approach is demonstrated to be
effective and efficient. The rest of the paper is organized as
follows: An overview of related research work is described
in Section II. The proposed search-based L-Shape fitting
approach 1is introduced in Section III. Section IV presents
the experimental results, from which conclusions are drawn
in Section V.

II. RELATED WORK

Carnegie Mellon University’s Tartan Racing Team won
the DARPA Urban Challenge with its autonomous vehicle
“Boss” in 2007. This groundbreaking competition was held
in an urban environment with low-density and low-speed
traffic, in which the autonomous vehicles were required
to perform complex maneuvers such as merging, passing
and interacting with both manned and unmanned vehicle
traffic. In the competition, the detection of curbs and the
tracking of cars were made possible thanks to high-definition
3D LIDAR sensors, e.g. the Velodyne HDL-64, sitting on
the top of “Boss”. The 3D point clouds provided by such
a high-definition 3D LIDAR sensor, together with other
sensors in the car, were dense enough to enable “Boss”
to clearly understand its surroundings through static map



generation and moving object tracking [14]. However, the
high-definition 3D LIDAR sensors are very expensive and
still cannot be commonly used on production vehicles.

Carnegie Mellon University’s new Cadillac SRX research
platform [15] tries to use production-grade sensors, such as
LIDAR, RADAR, and camera. These sensors not only pro-
vide a potential substitute solution to reduce the equipment
expenditure, but also enable a neat appearance for the vehicle
that looks familiar to the general public, as these sensors are
all concealed in the car (see Fig. 1). However, giving up
the high-definition 3D LIDAR sensor and its dense range
points presents major challenges for the perception task of
the autonomous vehicle. From laser-based range sensing, we
can only detect the parts of the object’s contour that are
facing towards the sensor. Occlusion makes this problem
even harder, as the contour of an object may not be fully
observed by range sensors. To address these difficulties, a
vehicular shape model which abstracts geometric features of
the desired target is widely adopted for feature extraction and
vehicle pose estimation. With 2D range data, the commonly
used vehicular shape models are L shape, boxes, and two
perpendicular lines [16], [17]. The features for target tracking
can be easily extracted from the vehicular shape model fitted
by the incomplete contour.

Based on the vehicular shape model, a variety of fitting
methods have been proposed. In [9], Principal Component
Analysis (PCA) is applied on range points to extract the most
significant axes which potentially correspond to the edges of
the car. Comparing poses among successive cycles also helps
to find the target’s heading direction. In [16], a weighted
least-squares method is used to get rid of outliers and fit an
incomplete contour to a rectangle model. In consideration
of the occlusion problem, both a line fitting and a right-
angle corner fitting are conducted in [16], and the corner
fit is chosen only when it is significantly better than the
line fit. In [17], the ordering of the range points, i.e. the
information of the scanning sequence, is utilized to efficiently
split the points into two disjoint sets, then two orthogonal
lines are fitted by each of the two sets of points respectively,
which correspond to the two edges of the car; following the
scanning sequence to iterate all these 2-D range points, the
proposed algorithm searches for a pivot point, and uses this
pivot point to yield those two disjoint sets, i.e., the set of
points scanned before the pivot and the set of points scanned
after it.

These methods have demonstrated their effectiveness in
certain situations, but there are still some limitations. Com-
pared to existing methods, there are three main contributions
in this paper. First, our approach does not depend on the
laser scanning sequence information and therefore it is easy
to achieve data fusion from multiple sensors, which makes
it suitable for applications with several production-grade
sensors. Secondly, our method is computationally efficient,
involving very few parameters and no need for hands-on
experience or parameter tuning. Thirdly, our approach is
able to accommodate any specified criterion, which makes
the approach flexible to suit different fitting demands and

Algorithm 1 Adaptive Segmentation Algorithm

Input: range data points X € R"*?
Output: set of point clusters S
1: for all z € X do

2 if = has not been checked then

3 C+0

4: Q.push(x)

5: while Q # 0 do

6: 2’ <+ Q.pop()

7 if =’ has not been checked then
8: r + aol|X||

9: find all £ € X that are within r for =’
10: insert all T into C'

11: mark z’ as checked

12: end if

13: end while

14: insert C' into S as a new cluster

15: end if

16: end for

extensible for a variety of applications.

ITII. L-SHAPE BASED VEHICLE DETECTION

After obtaining the laser range data, we first segment the
data points into clusters. These clusters typically correspond
to bicycles, pedestrians, or vehicles and can be classified into
each category [9], [18]. In this paper, we are only interested
in L-Shape fitting for vehicles. With the assumption of an
L-Shape vehicle model, i.e., a rectangle, for each segmented
cluster of points, we first search for the best rectangle direc-
tion according to a pre-specified criterion, and then obtain
the fitted rectangle following that direction and containing
all the points in this segmentation.

A. Segmentation

The algorithm for segmentation is displayed in Alg.1, in
which the basic idea is to divide the range points into clusters
according to a pre-specified distance threshold. The input for
the segmentation is the 2-D coordinates of n range scanning
points, X € R™*2_ which are relative to the rear differential
of our driverless vehicle. The output of the algorithm is a set
of segmented clusters, each of which potentially corresponds
to an object in the real world. The main procedure is that for
each scan point, we use a K-D tree to find its neighboring
points within a distance r and then put them together into a
cluster; then we find the points which lie within r distance
to any of the points already in the cluster, and again put the
newly found points in this cluster; we repeat this process until
the cluster does not grow any more, and this finalized cluster
serves as one segmentation in the output. This algorithm
ensures we only run the range search once for each point.

Note that the segmentation algorithm is adaptive because
the range search threshold r is proportional to the distance
between the point and the laser sensor (line 8 in Alg. 1).
This is justified by the underlying fact that the laser scan-
ning longitude resolution grows with the range distance. In
addition, whenever the scan ordering index of the range
points is available, the RangeSearch function can use this
information to speed up the process. In situations like ours



where scanning sequence is not available, a K-D tree data
structure can be used for efficient range searching in this 2-D
low-dimensional space.

B. L-Shape Fitting

With the L-Shape rectangle model assumption, for each
segmented cluster of points, we want to find a rectangle that
fits best to these points. One classical criterion in evaluating
the fitting performance is least squares, which involves the
following optimization problem:

e ] e . 2
rrllglﬁg’lglylczze Z (x;co80 + y;sinf — ¢1)
i€P
— . ] . — 2
+Z( x;8inf + y; cos§ — c3) )
1€Q
subject to PUQ ={1,2,....,m}

cr,eo€ R0°<60<90°

in which we minimize the squared error of the corner
fitting by looking for the optimal disjunction (P, Q split
the m points {(z;,y;)|i = 1,...,m} into two sets) and the
optimal parameters (0, c1, co) for the two perpendicular lines
which correspond to the points in P and @ respectively
- the two line expressions are zcosf + ysinf = ¢; and
—xsinf + ycosf = cy. However, the above optimization
problem turns out to be very difficult to solve due to the
combinatorial complexities in the partition problem.

Since accurately solving the above optimization problem
is impractical in this real-time application, we instead rely
on a search-based algorithm to find the best-fit rectangle
approximately. The basic idea is that we iterate through all
the possible directions of the rectangle; at each iteration,
we can easily find a rectangle oriented in that direction and
containing all the scan points; hence the distances of all the
points to the rectangle’s four edges can be obtained, and
based on these distances we can split the points into P and @,
and calculate the corresponding square errors as the objective
function in (1); after iterating all the directions and obtaining
all the corresponding square errors, we look for the optimal
direction which achieves the least squared error, and fit the
rectangle based on that direction. Once this fitted rectangle
is obtained, the features for vehicle tracking can be easily
extracted.

The proposed algorithm is presented in Alg. 2. The input
for the algorithm is the m points in this segmentation,
X € R™*2 The output from this algorithm is the line
representations for the four edges of the fitted rectangle. The
rectangle’s possible direction 6 ranges from 0° to 90°, as the
two sides of the rectangle are orthogonal and we only care
about the single edge that falls between 0° and 90°; the other
direction is simply 6 + /2. The search space of 6 can be
reduced if supported with a tracking system or vision scene
understanding. If the line representation for the edges is in
the form of az + by = c, then the parameters for four edges
can be easily obtained by steps 12 to 15 in Alg. 2.

Minimizing the squared error is a commonly used criterion
in fitting and regression, but there might also be other criteria

Algorithm 2 Search-Based Rectangle Fitting

Input: range data points X € R™*?
Output: rectangle edges {a;z + biz = ¢;]i = 1,2, 3,4}
1 Q+0
2: for 6 =0 to w/2 — § step 6 do
é1 + (cosf,sin6) > rectangle edge direction vector
és < (—sinf, cos0)
C1+ X-éT
Cy« X-é3
q < CalculatecriterionX(C1, C5)
insert g into @ with key (0)
9: end for
10: select key (6*) from ) with maximum value
11: Cf + X - (cos0*,sin0*)T,C5 < X - (—sin6*, cos 6*)T
12: a1 < cosB*, by + sinf*, ¢; + min{C}}
13: az < —sin@*, bz « cos0*, c2 + min{C5}
14: a3z < cos0*, bz + sinfB*, cs + max{C}}
15: asa < —sin@*, by + cos0*, ca + max{C5}

> projection on to the edge

AN AN

Algorithm 3 Area Criterion.

1: function CalculateArea(Cy, C2)

2 " +— max{C1} , crf”:n + min{C1}
3 5" <~ max{C2}, c3"" < min{Cs}
4: a % _(C’in(ll' _ C’iVLZTL) . (Cgm,:x _ CEVL’LTL)
5 return «

6: end function

suitable in the context of vehicle fitting. The criterion in
Alg. 2 is a performance score which reflects how well the
rectangle fits with the range points. The criterion can be
defined in a variety of ways and each definition might have its
strengths and drawbacks. We have considered three criteria
for selecting the rectangle: rectangle area minimization,
points-to-edges closeness maximization, and points-to-edges
squared error minimization, which are presented in Alg. 3,
4, and 35, respectively. Each of the three functions can be
chosen to play the role of the CalculatecriterionX function
in Alg. 2. All these criterion calculation functions take the
input of Cy and C5, which are the projections of all the range
points on the two orthogonal edges determined by 6.

By using the area minimization criterion in Alg. 3, we are
looking for the smallest rectangle that covers all the range
points; this is similar to the fitting method used in [19]. By
using Alg. 4, we emphasize how close these range points
are to the two edges of the right corner. In the projected 2-D
plane, ¢"** and """ specify the boundaries on axis é; for
all the points, and the vectors c*** — C; and C; — c{”i”
record all the points’ distances to the two boundaries; from
the two boundaries we choose one that is closer to the range
points, and denote the corresponding distance vector as Dy;
the distance vector D5 is defined similarly for the projection
axis é;. The closeness score is defined as >,_; ,, 1/d;,
with d; being the i-th point’s distance to its closest edge.
In this way, both decreasing the distance and increasing the
number of scanned points would lead to a higher score. Note
that there’s a minimum distance threshold dy to avoid (1)
division by zero for points on the boundary, and (2) dramatic
voting power for points very close to the edges. By using



Algorithm 4 Closeness Criterion.

Parameter: d,
1: function CalculateCloseness(C1, C2)

2: "+ max{C1}, "™ < min{C1}

3: 5"+ max{C2}, 5" < min{C>}
4 Dy < argmin, ¢ ¢ mae ¢y 0, —eming [V
Rk Dy« argmin, ¢ mas_ ¢, 0, cpring [v]le
6: B8+ 0

7: for i = 1 to length(D,) step 1 do

8: d + max{min{D1;), Da;) },do}

9: B+ B+1/d

10: end for

11: return 3

12: end function

Algorithm 5 Variance Criterion.

1: function CalculateVariance(C4, C2)

2: M max{Ci}, "« min{C1}
3 5" ¢« max{C2}, cF"" + min{Cs}

4 Dy 4= argmin, ¢ (omas ¢y 0, —cming [[v]1,
5 Dy <= argmin, ¢ (mas g, 0y —cqpiny [[l]s,
6: Ei {Dl(i)‘Dl(i) < Dg(i)}

72 B2 4= {Dai)| Doy < Digiy}
8.

9

10:

~ < — variance{ F }— variance{ F }
: return -y
end function

Alg. 5, we emphasize the squared error of the two orthogonal
edges fitted by the two disjoint groups of points. F; contains
the to-boundary distances of points that are assigned to €,
while E5 contains the distances for points assigned to és.
The variance of FE; is actually equivalent to the square error
of a line in direction € to the points belonging to F;. Since
in calculating the square error, we are essentially calculating
the variance of these distances, this criterion is also termed
’variance’. Recall that by using this variance criterion, we
are actually looking for an approximated solution to the
optimization problem in (1).

IV. EXPERIMENTAL RESULTS

Experimental results are presented in this section to evalu-
ate the correctness and efficiency of our proposed algorithms.
The experiments were tested on CMU’s autonomous vehicle
SRX (Fig. 1) on local roads. Six IBEOs are mounted
which provide multiple layers of range scan. Note that the
scanning sequence/ordering information is not used for the
experiments here.

A. Computation Efficiency

The computational efficiency of the algorithm is demon-
strated through experiments with approximately 10,000 laser
scans collected on local roads. Each laser scan is segmented
into clusters (around 25,000 clusters in total) and the search-
based fitting algorithm is carried out for each cluster. The
computation time is presented in Table I. The algorithms
are implemented in MATLAB and run on a Linux laptop
equipped with an Intel Core i7 CPU. The variance mini-
mization criterion is the most time-consuming because of
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Fig. 2: Rectangle fitting examples. In (a) and (c), the grey dots represent the
laser range scan points and the rectangles in green, red, and blue are the fitted
rectangles by using criteria area minimization, closeness maximization, and
variance minimization. The normalized scores for the three criteria over the
searched directions are plotted in (b) and (d), respectively. In example (a),
the fitting results from the three criteria are very similar, and the maxima
of the three curves in (b) are very close (marked by arrows and achieved
at 88°, 89°, and 0°, respectively). In example (b), the fitting result from
the area criteria is different from the other two, and its maximum in (d) is
away from the other two (achieved at 69°, 1°, and 86°, respectively).

o
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TABLE I: Computation Time of Rectangle Fitting

Criterion Mean (ms)  STD (ms)
Area Minimization 3.56 0.19
Closeness Maximization 4.00 0.23
Variance Minimization 8.37 0.32

the heavy computation in calculating the variance, which on
average takes around 3.84 ms per cluster. The computation
performance of the algorithms will be even better if imple-
mented in a more efficient programming language. Note that
the standard deviation of the computation time is very small,
which is beneficial as this indicates a consistent estimate of
the computation time for high-level decision tasks.

B. Rectangle Fitting

Typical rectangle fitting examples using the three criteria
are displayed in Fig. 2. In Fig. 2(a), the fitted rectangles by
the three criteria are almost the same; the corresponding nor-
malized criteria along the searched directions are displayed
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Fig. 3: Histogram of heading error.

TABLE II: Heading Error in Rectangle Fitting

Real Error (6 — 04) Absolute Error (|0 — 64])

Method Mean (deg) STD (deg) Mean (deg) STD (deg)
PCA -5.60 10.68 10.09 6.57
Area 0.65 14.80 11.78 8.46

Closeness 0.01 3.65 2.47 3.36

Variance -0.15 2.19 1.55 1.66

in Fig. 2(b), in which the maxima of the three curves are
achieved at nearby 6s. In Fig. 2(c), the area minimization
criterion yields an inaccurate rectangle heading while the
other two criteria are almost the same. A dataset consisting
of 145 clusters of points, i.e., the laser range points for 145
vehicles, whose headings are manually labeled at resolution
1°, is used to test the correctness of the proposed approach.
The closeness maximization criterion and the variance min-
imization both have very high correctness, while the area
minimization criterion sometimes fails in getting the right
heading. The performance of the area minimization criterion
is only guaranteed when the range scan point density in
the segmentation is high, e.g. in situations of fitting a small
object or when a more powerful sensor such as the Velodyne
is used [19]. Histograms of heading error using the three
criteria and PCA are displayed in Fig. 3, in which the heading
error is defined as the heading yielded by our approach minus
the heading of ground truth. The mean and standard deviation
for both the real error (i.e. heading error) and the absolute
error are listed in Table II, in which the mean real error is
an indication of estimation bias, while the mean absolute
error reflects the estimation accuracy (average magnitude of
the errors without considering their direction). As shown in
Table II, both the real error and absolute error are small for
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Fig. 4: Segmentation and vehicle fitting results for typical laser scan cycles.
The camera views for these two cycles are displayed in (a) and (c). In (b)
and (d), the segmented laser scan points are represented by markers with
varying colors and shapes, the vehicle fitting results by criterion closeness
and variance are displayed by rectangles in red and blue, respectively.

the closeness and the variance criteria.

The results from two typical cycles are displayed in Fig. 4.
The five cars scattered around in Fig. 4(a) are very well fitted
in Fig. 4(b), and the three cars crossing the intersection in
Fig. 4(c) are very well fitted in Fig. 4(d). The position of
our car is denoted by the filled black diamond at coordinates
(0, 0). Note that small clusters with fewer than ten range
points are ignored in the implementation.

Fig. 5 gives examples of the rare cases when the methods
did not achieve good performance. In Fig. 5(b), the closeness
criterion (rectangle in red) misunderstood the vehicle heading
due to the points outside of the L-Shape, which come
from the scan points of the white SUV’s side mirror in
Fig. 5(a); in Fig. 5(e), the variance criterion was jeopardized
by the points scattered around the lower part of the vehicle,
and these points arise from the back window of the truck.
The underlying reason for the imperfection here is that the
assumed L-Shape vehicle model does not hold for the two
examples, either due to the side mirror outside of the L-Shape
or because of the back window inside of the L-Shape. Note
that these imperfect cases are very rare, and their impact on
the vehicle tracking is very limited, since the fitting results
have always been corrected in their successive cycles, as
demonstrated by Fig. 5(c) and Fig. 5(d). It is also the case
that in these rare situations, when one of the two criteria is
jeopardized, the other one gives the correct rectangle fitting.



Fig. 5: Cases when the L-Shape model assumption does not hold. For the
white SUV in (a), the segmented laser scan points and the rectangle fitting
results in two successive cycles are displayed in (b) and (c). For the truck
in (d), the scan points and the fitting results in two successive cycles are
displayed in (e) and (f). In (b), the closeness criterion in red is jeopardized
by the side mirror as marked by the black arrow. In (d), the variance criterion
in blue is influenced by the truck’s back window. Note that even for these
two rare situations at least one of the two criterion works well and the fitting
results get corrected in the next cycle.

V. CONCLUSIONS

A search-based L-Shape fitting approach for laser range
data is proposed in this paper. The proposed approach does
not depend on the scan sequence/ordering information, en-
abling fusion of raw laser data from multiple laser scanners;
the approach is computationally efficient and easy to imple-
ment, involving very few parameters and no need for hands-
on experience or parameter tuning; it is able to accommodate
any specified criterion, which makes the approach flexible
for different fitting demands and extensible for a variety
of applications. Three criteria have been discussed in the
paper and compared in the experiments. As demonstrated
by the on-road experiments with production-grade sensors,
the proposed approach is effective and robust even under
circumstances when the L-Shape model assumption does not

hold, e.g., the laser scan of a SUV with big side mirror. The
mean absolute error in vehicle heading estimation can be
as low as 1.55°. In our future work, we will incorporate
the proposed L-Shape fitting approach into a general vehicle
tracking algorithm.
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